Treatment of primary immunodeficiencies

Ásgeir Haraldsson Professor of peadiatrics Faculty Chairman, Children's Hospital Iceland

Treatment and prevention of primary immunodeficiencies

Ásgeir Haraldsson Professor of peadiatrics Faculty Chairman, Children's Hospital Iceland

.... can we use to treat or prevent infections

- 1. Antibiotics
- 2. Anti-virals
- 3. Anti-fungals
- 4. Immunisations
- 5. Immunoglobulins
- 6. Haematological interventions
- 7. Common sense !

Number of bacteria

Number of bacteria in and on our body: 10^{14} $10^{14} = 100.000.000.000$

Number of cells: 10¹²

500 – 1000 different bacteria in and on our body!

Human race: 8×10^9

..... And virusses !!!

..... and fungi!!

Immune defects

Neutrophil defects

- Number or function
- Skin infections
- Mucous membranes infections
- Granulomas
- Umbilical cord

Complement defects

- Recurrent bacterial infections
- Inf with capsulated bacteria (meningococcus, pneumococcus)
- Autoimmune disorders

Humoral defects

- B-cell defects
- Number and function
- Not in first months of life
- Recurrent infections (RTI)
- Bacterial infections (esp. capsulated)

Cellular defects

- Early in life
- Recurrent infections,
 - viral, fungal and parasitic
- Malignancies

Neutrophils !

Neutrophil defects

Neutrophil numbers

Neutrophil function

- Recurrent resp inf
- +/- fever
- Skin infections
- Mucous membranes infections
- GE infections / disorders
- Sepsis
- Granulomas and abscesses
- Unusual pathogns
- Umbilical cord !

Neutropenia and neutrophil dysfunction

- Aplastic anaemia
 Pancytopenia (drugs, toxins, infections, etc.)
- Postinfectious neutropenia
 Autoimmune / benign
- ✓ Iatrogen
 (drugs, irradiation)

10 months of age – recurrent infections

Number of neutrophils in peripheral blood: 0.0 !!

Komplement

Complement defects

Complement defects

- V Recurrent bacterial infections
- V Inf with capsulated bacteria (meningococcus, pneumococcus)
- V Autoimmune disorders
 - SLE
 - Glomerulonephritis
 - HUS
 - Angio-oedema

Immunoglobulins Unbelievable diversity

Humoral immune disorders

B-cell defects (T-cell defects?) Number and function

- ✓ Recurrent infections (RTI)
- $\checkmark \quad \text{Not in first months of life}$
- ✓ Bacterial infections (esp. capsulated)
- ✓ Recurrent inf with same microorganisms

Figure 2. Biologic Activity of IgG-Fc Interacting Partners.

IgG-Fc binds to a variety of proteins that can initiate both proinflammatory pathways (e.g., Clq and activating Fc γ Rs) and antiinflammatory pathways (e.g., inhibitory Fc γ RIIB and SIGN-R1). These pathways, at least in part, require the presence of terminal sialic acid residues on Fc (α -2,6-sialylated Fc). The neonatal Fc receptor (FcRn) interacts with a distal site on Fc, independent of the sugar side chain. SIGN-R1 denotes surface receptor-specific intercellular adhesion molecule 3-grabbing nonintegrin-related 1.

Use of IVIG

B E Ólafsdóttir J ALLERGY CLIN IMMUNOL 2013 VOLUME 131, NUMBER 6

Serum immunoglobulins

Humoral immune disorders

Agammaglobulinaemia Hyogammaglobulinaemia Transient hypogamma of infancy IgA deficiency Subclass deficiency (IgG2 def) Antibody deficiency

Hyper IgE Sx Hyper IgM Sx Hyper IgD

CVID

T-cells

T cell disorders

Cellular defects

(with B- cell involvement)

- \checkmark Early in life
- Recurrent infections,
 viral, fungal and parasitic
- ✓ Autoinflammatory reactions
- ✓ Malignancies
- ✓ etc

Immunisations for immunodeficiet patients

Common childhood vaccines

- ✓ Diphtheria
- ✓ Tetanus
- ✓ Acellular pertussis
- ✓ Poliovirus
- ✓ Haemophilus influenzae type (Hib)
- Pneumococcal conjugate
- ✓ MenACWY-D

- ✓ Measles,
- ✓ Mumps
- ✓ Rubella
- ✓ Varicella
- ✓ Human papillomavirus
- ✓ Hepatitis A / B
- ✓ Rotavirus✓ Influenza

Immunisations

Immunisation The Icelandic Saga

Disclosure Ásgeir Haraldsson

- ✓ ÁH has done research work partly funded by pharmaceutical industry, consultancy and travel grants also paid by industry
- Income is paid to research funds, governed by The University/University Hospital, managed and audited by them
- ✓ These research funds are used for academic purposis, partly controlled ÁH
- ✓ ÁH or his family have no shares in any pharmaceytical companies and have no finincial relation to them

Copenhagen harbour 1885

www.delcampe.net

Copoenhagen – Raadhuset 1900

1900

Total population (growing): < 80.000 Under five mortality rate: 150/1000 1840

Total population (growing): < 57.000 Under five mortality rate: > 350/1000

Iceland around 2016

Con T

THE THE THE

iii.

ш

(TT)

H.I

Iceland around 2016

ann.

1111

11111

III III

ITT

Total population: 332.000 Under five mortality rate: Approximately < 2.0 /1000

Diphtheria in Iceland

First tried in 1935, probably stopped an epidemic 1950: All infants offered immunisation against diphtheria

Tetanus in Iceland

1953 Immunisation started Last case: 2008

Pertussis in Iceland

1927 Immunisation tried. Infant immunisation from 1959 2000:Acellulair pertussis, 2007 added to immunisation at 14 y

Poliomyelitis in Iceland

1956 Immunisation started1960: Last cases with paralysis, 1963: Last case (foreign origin)

Measles in Iceland

1960: Immunisation started, 1976: Started at 2 years of age 1989: Immunisation with MMR at 18 months of age started

Rubella in Iceland

1977: Immunisation started, girls at 12 years of age1989: Immunisation with MMR at 18 months of age started

Mumps in Iceland

1989: Immunisation with MMR at 18 months of age started Booster at 12 years of age

Hib in Iceland

1989: Immunisation against Haemophilus influenza type b startsMeningitisSepsis/blood stream infections

Men C in Iceland

Meningitis in Icelandt

Bacterial meningitis in children in Iceland, 1975–2010: A nationwide epidemiological study

KOLFINNA SNAEBJARNARDÓTTIR¹, HELGA ERLENDSDÓTTIR^{1,2}, INGI KARL REYNISSON¹, KARL KRISTINSSON¹, SANDRA HALLDÓRSDÓTTIR¹, HJÖRDÍS HARDARDÓTTIR², THÓRÓLFUR GUDNASON^{1,3,4}, MAGNÚS GOTTFREDSSON^{1,5} & ÁSGEIR HARALDSSON^{1,3}

Scandinavian Journal of Infectious Diseases, 2013

The VIce study

Vaccinations in Iceland

Principal investigators

Ásgeir Haraldsson, Karl G Kristinsson, Helga Erlendsdóttir

Yearly incidence per 1000 children (<2 years of age)

Invasive pneumococcal disease

Children < 18 years Iceland 2009-2014

Invasive pneumococcal disease

IPD; pre- and post immunisation

		2009	2010	2011	2012	2013	2014	2015	Total no.
<2 years		7	4	3	0	1	0	0	15
2 to 6 years		0	1	0	0	0	0	0	1
7 to 17 years		2	1	1	0	0	0	1	5
18 to 64 years		17	15	15	19	8	7	5	86
65 and older		14	16	14	8	10	18	19	99
Total all age groups		40	37	33	27	19	25	25	206
Incidence/100.000		12,5	11,6	10,4	8,4	5,9	7,7	7,6	
Vaccine types		25	22	13	13	6	7	3	89
Non-vaccine types		14	13	20	14	11	18	17	107
		2009	2009-2011			2012-2015			
	Total	11.4			7.4				
	<2 years	48.3			2.8			0.0=0	1
	18-64 yeas	8.0			5.1			0.0=0	4

Invasive pneumococcal disease

IPD according to age

Lectvind 2010. The vice study. Kristnisson et al

ESPID 2015: The VIce study. Erlendsdóttir et al.

We have come along way.....

Where do we stand today ?

Where do we stand today ?

Under five mortality: > 6 million children 6.3 million children under the age of five died in 2013

More than half is preventable !

More than half of these early child deaths are due to conditions that could be prevented or treated with access to simple, affordable interventions

Small Pox

Poliomyelitis

Measles in Europe

A practical approach to serious infections in children

An ESPID supported three day training course in Iceland 4-6 February 2016

(Reduced price for ESPID members)

The aim of the course is to train front-line doctors who look after children, using a practical approach to recognise and manage a wide range of serious infections, identifying the seriously unwell child and considering differential diagnoses.

The emphasis will be on interactive small-group workshops (max 10 people per workshop). The number of participants is therefore limited.

Further information: www.cpreykjavik.is/static/files/ESPID/course_info.pdf

<u>Register your interest:</u> *seriousinfections.espidcourse@gmail.com* By registering your interest, you will receive priority access to the early bird registration when this opens.

LOK !!!