VIRAL HEPATITIS IN THE ARCTIC – ON THE EDGE OF EXTINCTION

Malene Landbo Børresen
M.D, PhD.
Dep. of Epidemiological Research
Statens Serum Institut
and
Dep of Pediatrics, Hvidovre Hospital

Arctic viral hepatitis working group since 2006 with experts from the circumpolar area.

Thanks to
- Brian McMahon, Alaska,
- Anders Koch,
- Vladimir Chulanov, Russia,
- Gerry Minuk, Canada
 - for sharing data and slides

- Nothing to disclose
Viral hepatitis in the Arctic
What matters?

- Hepatitis A and vaccination against hepatitis A
- Hepatitis E
- Hepatitis B
 - Among children
 - Vaccination strategies
 - Risk of cancer
 - Genotypes
- Hepatitis D

The hepatitis viruses

<table>
<thead>
<tr>
<th>Name of Virus</th>
<th>Hepatitis A Virus (HAV)</th>
<th>Hepatitis B Virus (HBV)</th>
<th>Hepatitis C Virus (HCV)</th>
<th>Hepatitis D Virus (HDV)</th>
<th>Hepatitis E Virus (HEV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Picornavirus</td>
<td>Hepadnavirus</td>
<td>Flavivirus</td>
<td>Deltavirus</td>
<td>Hepevirus</td>
</tr>
<tr>
<td>Viral genome</td>
<td>ssRNA</td>
<td>dsDNA</td>
<td>ssRNA</td>
<td>-ssRNA (-ve)</td>
<td>ssRNA</td>
</tr>
<tr>
<td>Transmission</td>
<td>Enteric</td>
<td>Parental</td>
<td>Parental</td>
<td>Parental</td>
<td>Enteric</td>
</tr>
<tr>
<td>Incubation period</td>
<td>15-45 days</td>
<td>45-160 days</td>
<td>15-150 days</td>
<td>30-60 days</td>
<td>15-60 days</td>
</tr>
<tr>
<td>Chronic Hepatitis</td>
<td>No.</td>
<td>Yes. 10% chance</td>
<td>Yes. >50% chance</td>
<td>Yes. <5% of coinfectious</td>
<td>No.</td>
</tr>
<tr>
<td>Cure?</td>
<td>No cure. Treatments usually tackle the symptoms.</td>
<td>No cure. Treatments usually tackle the symptoms.</td>
<td>Cure rate around 50%</td>
<td>No cure. Treatment: Alpha interferon for 12 months.</td>
<td>No cure. Treatments usually tackle the symptoms</td>
</tr>
</tbody>
</table>
Hepatitis A

- Is endemic with epidemics in the majority of the world
- In the Arctic we saw an epidemic pattern
- In children aged <6 years, 70% of infections are asymptomatic. If illness, < 30% with jaundice
- Among older children and adults, infection is typically symptomatic, with jaundice occurring in >70% of patients.
- Can be prevented by vaccination. Most part of the world a 2-dose schedule after 12 month of age
- Vaccination at a younger age less immunogenic
- Vaccination probably lifelong protection
- Universal HAV vaccination in Alaska, but not in Russia, Greenland and Canada
Hepatitis A (HAV)

- Denmark Incidence 2013: 1.8/100,000 PYRS

Hepatitis A cases in Denmark

HAV epidemics in Greenland

- 1970-74
 - 11/15 districts
 - 4,961 cases (11%) of clinical hepatitis
 - Incidence: 2,606/100,000 persons per year
 - 93% of cases among persons aged 0-25 years
 - Immunity in older persons compatible with 1947-48 epidemic
 - Attack rate Danes: 1/6 AR for Greenlanders
 - Case-fatality rate 0.3%
HAV antibodies at present in Greenland

HAV antibodies
Sisimiut & Ilulissat 1994 (Langer et al).

Hepatitis A in Alaska Natives and Non-Natives in Alaska, by Year
Hepatitis A in Children in Alaska and the Arctic

• All children in Alaska regardless of ethnicity have been given hepatitis A vaccine since 1997 (>8 lower 48)
• Two long-term studies on Alaska Native children vaccinated ages 3-6 years and 6 months-15 months show >90% protection at 20 years and 15 years
• By 2014 the Arctic rated as low risk area by the WHO

Hepatitis E (HEV)

• Every year an estimated 20 million HEV infections occur globally resulting in more than 3 million cases and 70,000 deaths (Rein, 2012).
• Most cases occur in developing countries
• Hepatitis E case fatality is highest among pregnant women, which can be as high as 20% (3. trimester)

Seroprevalence

• Worldwide 1-50%, (highest South Asia, North Africa)
• Denmark 1983 (31.6%), 2003: (20%), farmers: 51% (Christensen, 2008)
• Greenland: 3% seroprevalence (~rate of false test positivity) (Langer et al, 1994)
Hepatitis B epidemiology

- About 2 million have markers of exposure to HBV (HBcAb+)
- Every year around 4 million new cases of HBV infection
- 4000 million chronic carriers
- Mortality: 1 million/yr
- Can be prevented with vaccination

HBV - Risk of chronic infection by age at infection
Route of HBV transmission

Transmission of HBV Infection
- Sexual Transmission
- Blood Transfusion (Now very low risk in USA as all blood is screened)
- Organs and Tissue Transplantation
- Mother to Baby At Birth
- Contaminated Needles and Syringes (IVDA)
- Child to Child, Early Childhood

Hepatitis B (HBV) in Denmark
- Chronic HBV Denmark (2014): Incidence 4.8/100,000
- Prevalence (2007), total 4,466 persons:
- Age < 25 years: 0.35%, age > 40 years: 0.08%

New Hepatitis B cases in Denmark
Greenland HBV Markers by age 1965-1998

40 – 75% exposed (HBcAb+)
7 – 20% chronically infected (HBsAg+)

Hepatitis B incidence
Greenland

Incidence per 100 person years

(Børresen, 2015)
Hepatitis B in Alaska

- 1972-73: High incidence acute HBV
- 1973-1974: Serosurvey found prevalence of HBsAg in 12 villages in Southwest AK 6.4% (0-20.1%)\(^1\)
 - 1974-1978: Incidence study 1280 seronegative persons: 14.8% HBV\(^2\)
 - 29% infected < 5 years of age became chronic carriers
 - Transmission mainly horizontal from child to child probably through open cuts and scratches
 - HBsAg was found all over environmental surfaces (school lunchroom table tops, homes of carriers)

\(^1\)Schreeder Am J Epidemiol 1983; 118:543-9
\(^2\)McMahon JID 1985; 151:599-603
HBV In Alaska

- From 1983-1987, 52,000 Alaska Native Persons were tested for hepatitis B seromarkers and 40,000 with negative markers were vaccinated
- (3.1% HBsAg pos, 1536 included for follow-up).
 - 657 children < age 20 with chronic hepatitis B virus (HBV) infection were identified
 - All identified persons have been followed prospective since then (median f/u 25 years)
 - All newborns since have received hepatitis B vaccine starting at birth (0,1,12 month)
 - Children of HBsAg-positive mothers also receive HBIG at birth

Incidence Symptomatic HBV in Alaska Native Peoples 1981-2008

CDC/HIS Vaccine Demonstration Program begins in 16 villages of Yukon Kuskokwim Delta
Statewide Program begins-all susceptibles immunized
- pregnant women screened/infants HBvax + HBIG
- begin universal newborns immunization

McMahon et al
HBV In Alaska

Number of HBsAg-positive Alaska Native (AN) Children Under 20 Years of Age: 1988-2008

Prevalence of HBsAg in 20,657 persons <20 years screened 1983-1987 was 3.2%. In 2012, no AN children are known to be HBsAg+.

Hepatitis B Vaccine Coverage
Lifetime Risk of Hepatocellular Carcinoma (HCC)

- Hepatitis B (HBV): lifetime risk of HCC: 1%-25%
- Rates of Hepatocellular carcinoma (HCC) are different within Arctic populations

<table>
<thead>
<tr>
<th>Area</th>
<th>ASR 1969-88</th>
<th>ASR 1989-98</th>
<th>SIR (95% CI) Connecticut</th>
<th>SIR (95% CI) Denmark</th>
<th>SIR (95% CI) Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumpolar</td>
<td>8.0</td>
<td>4.0 (3.0-5.2)</td>
<td>3.1 (2.2-4.3)</td>
<td>4.1 (3.0-5.3)</td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td>15.1</td>
<td>7.2 (5.1-9.9)</td>
<td>5.5 (3.9-7.6)</td>
<td>7.7 (5.2-10.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 ♂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 ♀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenland</td>
<td>5.7</td>
<td>2.7 (1.5-4.5)</td>
<td>2.1 (1.2-3.4)</td>
<td>2.8 (1.5-4.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 ♂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9 ♀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>1.0</td>
<td>0.4 (0.0-2.2)</td>
<td>0.3 0.0-1.7</td>
<td>0.4 0.0-2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASR Age Standardized rates, SIR Standard Incidence ratios

Based on Friberg, Storm, Rasmussen and McMahon

HCC Inuit
1969-88, 1989-97,
Different incidence of HCC within the Arctic

HBV - Risk of chronic infection and risk of HCC
- Host:
 - Age at infection
 - Area of origin
 - Sex (male)
 - Co-infection with HIV, HDV,
 - Aflatoxin
- Virus:
 - Genotype (A-H)
 - Viral load, HBeAg positivity
 - Mutations

HBV – Genotype (A-H)

Geographic distribution of HBV genotypes
HCC in Alaska Natives <20 years of age

P value for trend = 0.002

Alaska Genotype F

Number of Cases of HCC Occurring in Young Persons by Age and HBV Genotype*

*No cases occurred in persons infected with HBV genotypes B6 or C

McMahon el al, unpublished data
Genotype distribution in the Arctic (%)

<table>
<thead>
<tr>
<th></th>
<th>Alaska</th>
<th>Greenland</th>
<th>Greenland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=100</td>
<td>N=100</td>
<td>N=52</td>
</tr>
<tr>
<td>A</td>
<td>13</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>15</td>
<td>91</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>56</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. McMahon et al. 2014
3. Krarup et al. 2004

Questions raised

- HBV genotype distribution different in Alaska and Greenland
 - F frequent in Alaska, not in Greenland
 - B frequent in Greenland, not in Alaska
- Incidence of HCC high in Alaska, low in Greenland
- HBV genotypes related to morbidity in Alaska
 - F related to HCC in young persons
- What is the impact on genotype B on liver disease in the Arctic?
Worldwide - Two major subtypes of Hepatitis B virus genotype B

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Description</th>
<th>Risk of HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bj ('Japan')</td>
<td>B1 Non-recombinant</td>
<td>Less commonly associated with HCC</td>
</tr>
<tr>
<td>Ba ('Asia')</td>
<td>B2 Intergenomic recombination with HBV/C in core promoter/precore/core genome region</td>
<td>Higher risk of HCC development in HBV carriers</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td></td>
</tr>
</tbody>
</table>

Sakamoto et al. J Gen Virol 2006
Sugachi et al. Gastroenterology 2003
Kao et al. Gastroenterology 2000
Orito et al. Hepatology 2001

Comparative study of HBV B subgenotypes in the Arctic 2007

- 50 HBV carriers
 - Alaska: 31
 - Canada (Baker lake): 8
 - Greenland (Sisimiut): 11
- All native persons
- No HCV or HIV coinfection
- Classification
 - Asymptomatic
 - Chronic liver disease
 - LC or HCC
- 20/50 HBV strains complete genome sequenced
 - 6 Alaska
 - 8 Canada
 - 6 Greenland
- All 50 HBV strains amplified in EnhII/Cp/preC/C regions
- Comparisons with bank HBV sequences from Asia

Phylogenesis based on complete genome sequences

- Asian/Japanese/Arctic HBV strains in 6 distinct clusters
- Asian/Japanese strains in known clusters Bj/B1 + Ba/B2-B5
- All Arctic strains in distinct separate (unclassified) cluster
- Suggested designation B6

Morbidity and HBV B subgenotypes

<table>
<thead>
<tr>
<th>Feature</th>
<th>HBV/B6 (n = 50)</th>
<th>HBV/Bj (n = 50)</th>
<th>HBV/Ba (n = 50)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td></td>
<td></td>
<td></td>
<td>Matched</td>
</tr>
<tr>
<td>Age, mean ± SD, years</td>
<td>48.1 ± 19.6</td>
<td>48.1 ± 16.9</td>
<td>47.9 ± 13.1</td>
<td><.02</td>
</tr>
<tr>
<td>Hepatitis B e antigen</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA >5 log copies/mL</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine transaminase</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>35 (61)*</td>
<td>22 (44)</td>
<td>15 (30)</td>
<td><.02</td>
</tr>
<tr>
<td>Chronic hepatitis</td>
<td>15 (30)</td>
<td>24 (50)</td>
<td>21 (42)</td>
<td>NS</td>
</tr>
<tr>
<td>Liver cirrhosis/hepatocellular carcinoma</td>
<td>0</td>
<td>.4 (6)</td>
<td>14 (26)*</td>
<td><.03</td>
</tr>
</tbody>
</table>

NOTE. Data are no. (% of participants, unless otherwise indicated. HBeAg, hepatitis B e antigen; NS, no significant difference.

* For B6 vs. Ba, P = .0026; for Bj vs. Ba, P = .0143.
* For B6 vs. Bj, P = .0001; for B6 vs. Ba, P = .0006.
* For B6 vs. Bj, P = .0006; for B6 vs. Ba, P = .0541.
* For B6 vs. Bj, P = .0001; for B6 vs. Ba, P = .0214.
Hypothesis: Co-existence of HBV B genotype and Eskimos

- Eskimos migrated from East Asia/Siberia to Alaska 10,000 BC
- Later developed into 3 groups
 - Aleutians (Aleuts, West Alaska)
 - Yupik (West Alaska)
 - Inuit (Point Barrow, Alaska, Canada & Greenland)
- The Inuit spread from Alaska eastwards 1,000 AD
- Subgenotype B6 followed the Eskimos from Asia?
 - Developed from B1?
 - Common forefather of B1/B6?

Hepatitis B – genotype B

- A new HBV/B subgenotype B6 identified
- All 50 Arctic HBV/B strains belonging to that subgenotype
- Related to the non-recombinant Japanese Bj/B1 subgenotype and different from recombinant Asian Ba/B2-B5 subgenotypes
- Non-recombinant B1 & B6 appear less virulent than B2-B5
- Classification of HBV/B into recombinant and non-recombinant forms
- B6 May have followed the Eskimos from Asia
- Larger studies on clinical manifestations of B6 needed
HBV in the Arctic

- HBV vaccination has eliminated new cases of HBV among children in Alaska
- Less long-term consequences than expected in Greenland as compared with Alaska – Different genotypes
- Infection in the 80és in Canada and Alaska among children, and in Greenland in teenage years
- New ‘Arctic’ B₆ sub-genotype identified, related to benign Japanese B₁ sub-genotype

Hepatitis D – delta virus

- Worldwide, 8 genotypes (clades), genotype I most adverse outcomes
- Presence of HBV-DNA and HDV-RNA is associated with a lower HBV remission rate
- Super-infection with HDV has a higher risk of chronicity and worse long term outcome than HDV co-infection
- Hepatitis D is only present in Greenland and Chukotka in Russia in the Arctic
- However different genotypes (I in Greenland, II in Chukotka)
- Does Hepatitis D matter?
Greenland HDV by area

Hepatitis B and D outbreak in Itilleq near Sisimiut in Greenland

Børresen et al., Journal of Viral Hepatitis, 2009,
Severity markers for HBsAg-positive, 2006-2007

<table>
<thead>
<tr>
<th></th>
<th>Children (n=15) (%)</th>
<th>Adults (n=16) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT > 45 I/U</td>
<td>73</td>
<td>38</td>
</tr>
<tr>
<td>Viral load > 1 mio. IU/mL</td>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>HBeAg positive</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis D (HDV) positive</td>
<td>40</td>
<td>63</td>
</tr>
<tr>
<td>HDV-seroconversion</td>
<td>33</td>
<td>0</td>
</tr>
</tbody>
</table>

Regression model:
Hepatitis D the strongest predictor for elevated ALT (liver damage)
In 2009, additional 2 children HDV seroconverted

HBV in Itilleq – Conclusions

- High prevalence of chronic HBV infection, especially among children (genotype D)
- Elevated liver enzymes in chronic infected (HBeAg-positive) children
- Super-infection with Hepatitis D most likely, (clade I)
- Ongoing HDV outbreak in Itilleq
Viral hepatitis – On the edge of extinction?

- Hepatitis A By 2014 the Arctic rates as low risk country.
- Vaccination against hepatitis A and B in parts of the Arctic is a real success story.
- Hepatitis B – In Alaska the prevalence of HBsAg in children has been reduced to 0.
- Genotype F in Alaska sucks – but is dying out.
- New ‘Arctic’ B₂ sub-genotype identified, related to benign Japanese B₁ sub-genotype.
- Outbreak of Hepatitis D in Greenland - is HDV a treat?
- Hepatitis B introduced in the universal childhood vaccination programme in Greenland in 2010.

Tak for opmærksomheden